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Benchmarking Optimization Software with COPS

by

Elizabeth D� Dolan and Jorge J� Mor�e

Abstract

We describe version ��� of the COPS set of nonlinearly constrained optimization

problems� We have added new problems� as well as streamlined and improved most of

the problems� We also provide a comparison of the LANCELOT� LOQO� MINOS� and

SNOPT solvers on these problems�

Introduction

The COPS ��
 test set provides a modest selection of di�cult nonlinearly constrained opti	

mization problems from applications in optimal design� �uid dynamics� parameter estima	

tion� and optimal control� In this report we describe version 
�� of the COPS problems� The

formulation and discretization of the original problems have been streamlined and improved�

We have also added new problems�

The presentation of COPS follows the original report� but the description of the problems

has been streamlined� For each problem we discuss the formulation of the problem and the

structural data in Table ��� on the formulation� The aim of presenting this data is to

provide an approximate idea of the size and sparsity of the problem�

Table ���� Description of test problems

Variables
Constraints
Bounds
Linear equality constraints
Linear inequality constraints
Nonlinear equality constraints
Nonlinear inequality constraints
Nonzeros in r�f�x�
Nonzeros in c��x�

We also include the results of computational experiments with the LANCELOT� LOQO�

MINOS� and SNOPT solvers� These computational experiments di�er from the original ��


results in that we have deleted problems that were considered to be too easy� Moreover�

in the current version of the computational experiments� each problem is tested with four

variations�

An important di�erence between this report and the original ��
 report is that the tables

that present the computational experiments are generated automatically from the testing

script� This is explained in more detail in the following section� Testing Methods�

�



Testing Methods

We have performed our trials on sixty	eight variants of seventeen di�erent applications�

which constitute version 
�� of the COPS set� The implementations are written in the

AMPL modeling language for use with the AMPL �version ��������� interfaces to nonlin	

early constrained optimization solvers of interest to us� The solvers include LANCELOT

�AMPL driver �������	�� LOQO ���� ��������
�� MINOS ��� ����
������ and SNOPT ���	�

����
������

We have devised a script for running a problem on each solver successively� so as to

minimize the e�ect of �uctuation in the machine load� The script tracks the wall	clock

time from the start of the solve� killing any process that runs for more than ����� seconds�

which we declare unsuccessful� We cycle through all problem variants� recording the wall	

clock time as well as the combination of AMPL system time �to interpret the model and

compute varying amounts of derivative information required by each solver� and solver time�

We consider the times returned by AMPL de�nitive� but we initially record the wall	clock

times to check for discrepancies in the solvers� methods of calculating execution time� We

include no problem results for which the AMPL time and the wall	clock time di�er by more

than ten percent� To further ensure consistency� we have veri�ed that the AMPL time

results we present could be reproduced to within ten percent accuracy� All computations

were done on a SparcULTRA
 running Solaris ��

Once all the runs have completed� a parser searches the output �les for key text patterns

indicating whether the solver completed successfully� The script then gathers the data we

need into tables and other �les for later calculations�

The AMPL interfaces to these solvers provide numerous options� We set options for

each solver and execute our �nal complete runs with the same options for all problems� The

options involve setting the output level so that we can gather the data we want� increasing

the iteration limits as much as allowed� and increasing the super	basics limits for MINOS

and SNOPT to ����� None of the failures we record in the �nal trials include any solver

error messages about having violated these limits�

We realize that testing optimization software is a notoriously di�cult problem and that

there may be objections to the testing presented in this report� For example� performance

of a particular solver may improve signi�cantly if non	default options are given� Another

objection is that we only use one starting point per problem and that the performance of a

solver may be sensitive to the choice of starting point� We also have used the default stopping

criteria of the solvers� This choice may bias results but should not a�ect comparisons that

rely on large time di�erences� In spite of these objections� we feel that it is essential that we

provide some indication of the performance of optimization solvers on interesting problems�

This report is an e�ort in this direction�






� Largest Small Polygon

Find the polygon of maximal area� among polygons with nv sides and diameter d � ��

Formulation

This is a classic problem �see� for example� Graham ���
�� If �ri� �i� are the coordinates of

the vertices of the polygon� then we must minimize

f�r� �� � ��

�

nv��X
i��

ri��ri sin��i�� � �i�

subject to the constraints

r�i � r�j � 
rirj cos��i � �j� � �� � � i � nv� i � j � nv �

�i � �i��� � � i � nv�
�i � ��� �
� ri � �� � � i � nv�

Our implementation follows ���
 and �xes the last vertex by setting rnv � � and �nv � ��

By �xing a vertex at the origin� we can add the bounds ri � ��
The optimal solution is not usually a regular hexagon� as was shown by Graham ���
�

Another interesting feature of this problem is the presence of order n�v nonlinear nonconvex

inequality constraints� We also note that as nv � �� we expect the maximal area to
converge to the area of a unit	diameter circle� ��� � ������� This problem has many local

minima� For example� for nv � � a square with sides of length ��
p

 and an equilateral

triangle with another vertex added at distance � away from a �xed vertex are both global

solutions with optimal value f � �
�
� Indeed� the number of local minima is at least O�nv ���

Thus� general solvers are usually expected to �nd only local solutions� Data for this problem

appears in Table ����

Table ���� Largest	small polygon problem data

Variables �nv
Constraints � �

�
nv � ���nv � ��

Bounds �nv
Linear equality constraints �
Linear inequality constraints nv � �
Nonlinear equality constraints �
Nonlinear inequality constraints �

�
nv�nv � ��

Nonzeros in r�f�x� �nv
Nonzeros in c��x� �nv�nv � ��

Performance

Results for the AMPL implementation are summarized in Table ��
� A polygon with almost

equal sides is the starting point� Global solutions for several nv are shown in Figure ����

�



Table ��
� Performance on largest small polygon problem

Solver nv � �� nv � �� nv � 
� nv � ���

LANCELOT ���
� s �	
��� s ���
�� s z

f 
�
	
��e��� 
�
��

e��� 
�
�
�
e��� z

c violation 
�
	
��e��� �������e��� ��
����e��� z

iterations �� �	� �
� z

LOQO ���	 s ����� s ��
�	 s z

f 
���
��e��� 
�

���e��� 
�

���e��� z

c violation ���e��	 ���e��	 ���e��	 z

iterations ��� ��� ��� z

MINOS ���� s �
��� s 	
��� s ����
� s
f 
����
�e��� ���
���e��� 
���
�	e��� 
�
�
��e���

c violation ���e��� ���e��� ��
e��� ���e���
iterations �
� ���� ���� ��
�

SNOPT ���� s ����	 s 	���
 s ����� s
f 
�
	
��e��� 
�
����e��� 
�
�
�	e��� 
�
����e���

c violation ��	e��� 	��e��� ���e��	 ���e��

iterations 	� ��� �		 
��

y Errors or warnings� z Timed out�
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Figure ���� Polygons of maximal area with nv � �� ��� 
� �left� center� right�
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� Distribution of Electrons on a Sphere

Given np electrons� �nd the equilibrium state distribution �of minimal Coulomb potential�

of the electrons positioned on a conducting sphere�

Formulation

This problem� known as the Thomson problem of �nding the lowest energy con�guration of

np point charges on a conducting sphere� originated with Thomson�s plum pudding model

of the atomic nucleus� This problem is representative of an important class of problems in

physics and chemistry that determine a structure with respect to atomic positions�

The potential energy for np points �xi� yi� zi� is de�ned by

f�x� y� z� �

np��X
i��

npX
j�i��

�
�xi � xj�

� � �yi � yj�
� � �zi � zj�

�
���

� �

and the constraints on the np points are

x�i � y�i � z�i � �� i � �� � � � � np�

Data for this problem appears in Table 
���

This problem has many local minima at which the objective value is relatively close to

the objective value at the global minimum� Experimental and theoretical results ���� 
�


show that

min
�
f�v�� � � � � vnp� � kvik � �� � � i � np

� � �
�
n�p��� ��� � � � �

�
�

np

����

�

Also� the number of local minima grows exponentially with np� Thus� determining the

global minimum is computationally di�cult� and solvers are usually expected to �nd only

a local minimum�

Table 
��� Electrons on a sphere problem data

Variables �np
Constraints np
Bounds �
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints np

Nonlinear inequality constraints �
Nonzeros in r�f�x� 	n�p
Nonzeros in c��x� �np

Performance

Results for the AMPL implementation are summarized in Table 
�
� The starting point is

a quasi	uniform distribution of the points on a unit sphere� The best solution for np � ���

is shown in Figure 
���

�



Table 
�
� Performance on electrons on a sphere problem

Solver np � �� np � �� np � ��� np � ���

LANCELOT ��	
 s 
��
 s ����� s �
��� s
f ����
��e��� ������
e��� ����
��e��� ��
��
	e���

c violation �����
�e��� ���
	��e��
 �������e��
 ��	����e���
iterations �� �� �
 ��

LOQO ��
� s 
�	� s �
	��� s ���
�

 s

f ����
��e��� ������
e��� ����
��e��� ��
��
	e���
c violation ��
e��	 ��	e��	 ���e��	 ��	e��	
iterations �
 �� ��� ���
MINOS ���� s ���
� s z 
	���
 s

f ����
��e��� ������
e��� z ����	��e���y
c violation 
�
e��
 ���e��� z ���e��	y
iterations ��
� �	�� z ��
�

SNOPT 	��� s ����
 s 
���� s ������
 s
f ����
��e��� ������
e��� ����
��e��� ��
��	�e���

c violation ���e��	 ��
e��� ���e��� 	��e���
iterations ��� ��� ��
 ��
�

y Errors or warnings� z Timed out�

MINOS cannot solve the problem for np 	 ��� For np � 
�� it gives the error message

unbounded �or badly scaled� problem�

Figure 
��� Optimal distribution of electrons on a sphere� np � ���

�



� Hanging Chain

Find the chain �of uniform density� of length L suspended between two points with minimal

potential energy�

Implementation

This classical problem �see Cesari ���� pages �
���
�
� was suggested by Hans Mittelmann�

In this problem we need to determine a function x�t�� the shape of the chain� that minimizes

the potential energy Z �

�

x
p
� � x�� dt

subject to the constraint on the length of the chain�Z �

�

p
� � x�� dt � L�

and the end conditions x��� � a and x��� � b� We reformulate this problem as a control

problem in terms of the function u � x�� The optimal control version of the problem isZ �

�

x
p
� � u� dt

subject to a di�erential equation and a constraint on the length of the chain�

x� � u�

Z �

�

p
� � u� dt � L�

We discretize the integrals and the di�erential equation with the trapezoidal rule on a

uniform mesh with nh intervals� Data for this problem appears in Table ����

Table ���� Hanging chain problem data

Variables �nh
Constraints nh � �
Bounds �
Linear equality constraints nh
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nh
Nonzeros in c��x� �nh

Performance

Results for the AMPL implementation are summarized in Table ��
 with a � �� b � �� and

L � �� The starting point is the quadratic

x�t� � �
jb� aj� t�t � 
tm� � a�

�



where tm � ��
� if b 	 a and tm � ���� otherwise� evaluated at the mesh points� This

choice is convex and satis�es the boundary data� The control function u is set to x�� The

optimal chain is shown in Figure ����

Table ��
� Performance on hanging chain problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT ���	� s ���
	 s ��
�
 s �

��� s
f ���
���e��� ���
���e��� ����	��e��� ����


e���

c violation �������e��� 	������e��� �������e��� ����
��e���
iterations 

� ���	 ���� ����

LOQO �
��� s ���	 s �
���
 s ���
��� s
f ���
���e��� ����	

e��� ����
	�e��� ����
��e���

c violation ���e��
 
��e��� ��
e��� ���e��	
iterations 

� ��� 
�
 



MINOS ���� s ���� s ���
� s 
��	 s

f ���
���e��� ����	

e��� ����
	�e��� ����
��e���
c violation ���e��
 ���e��
 ���e��� ���e���
iterations ��
 
�� ���� ����
SNOPT ��
� s ���
� s ���
 s z

f ���
���e��� ����	

e��� ����
	�e��� z

c violation ��	e��	 ���e��	 ���e��� z

iterations ��� ��� �

 z

y Errors or warnings� z Timed out�
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Figure ���� Hanging chain of length L � �
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� Shape Optimization of a Cam

Maximize the area of the valve opening for one rotation of a convex cam with constraints

on the curvature and on the radius of the cam�

Formulation

The formulation of this problem is due to Anitescu and Serban ��
� We assume that the

shape of the cam is circular over an angle of �
�
� of its circumference� with radius rmin� The

design variables ri� i � �� � � � � n � represent the radius of the cam at equally spaced angles

distributed over an angle of �
�
�� We maximize the area of the valve opening by maximizing

f�r� � �r�v

�
�

n

nX
i��

ri

�

subject to the constraints on r� The design parameter rv is related to the geometry of the

valve� We also require that rmin � ri � rmax� The requirement that the cam be convex is

expressed by requiring that

area�ri��� ri��� � area�ri��� ri� � area�ri� ri����
where area�ri� rj� is the area of the triangle de�ned by the origin and the points ri and rj
on the cam surface� This convexity constraint can also be expressed as


ri��ri�� cos��� � ri�ri�� � ri���� i � �� � � � � n� ��

where r�� � r� � rmin� rn�� � rmax� rn�� � rn and � � 
����n � ��� The curvature

requirement is expressed by

�� �
�
ri�� � ri

�

�
� �� i � �� � � � � n�

This is a departure from ��
� where the curvature constraint was expressed in terms of

�ri�� � ri�
�� Data for this problem appears in Table ����

Table ���� Optimal design of a cam problem data

Variables n

Constraints �n � �
Bounds n

Linear equality constraints �
Linear inequality constraints n � �
Nonlinear equality constraints �
Nonlinear inequality constraints n� �
Nonzeros in r�f�x� �
Nonzeros in c��x� �n

We follow ��
 and use rmin � ��� and rmax � 
�� for the bounds on r� rv � ��� in the

area of the valve� and � � ��� in the curvature constraint� Since the optimal cam shape

is symmetric� we consider only half of the design angle� The problem was originally ��


formulated for the full angle of �
�
��

�



Performance

Results for the AMPL implementation are summarized in Table ��
� We use a starting

guess of ri � �rmin � rmax��
� The cam shape for � � ��� appears in Figure ���� We note

that the number of active constraints increases with � up to a threshold of �� � ���� after
which increasing � does not change the optimal solution�

Table ��
� Performance on optimal cam shape problem

Solver n � ��� n � ��� n � ��� n � 
��

LANCELOT ���
� s �	��
	 s ������� s �


��� s
f �����

e���y ������
e���y ������	e���y ��
��	�e���

c violation ����	
�e���y �������e���y �������e���y ����
��e���
iterations ��� �	� 
�
 

�
LOQO ���
 s ���� s ���� s ����
 s

f ���
���e��� ���

��e��� ���
��
e��� ���
��
e���
c violation ���e��� ��	e��� ���e��� ��
e���
iterations �� 
� ��� ��


MINOS ��

 s ���� s ���	 s ���
� s
f ���
���e��� ���

��e��� ���
��
e���y ���
���e���

c violation ���e��� ���e��� 	��e���y ���e���
iterations �
� ��
 
�� ����
SNOPT ��� s ��
	 s ���
 s ����
 s

f ���
���e��� ���
���e��� ���
���e��� ����
�	e���
c violation ���e��� ��
e��
 ���e��� ���e��

iterations ��� �
� ���� ����

y Errors or warnings� z Timed out�

LANCELOT stops prematurely with the message step got too small for n � ���� 
��� ����

and its solution for n � ���� while showing the best value� violates the problem constraints

to an extent obvious in a graph of the solution� MINOS quits for n � ��� because the

current point cannot be improved�

Figure ���� Cam shape for � � ����

��



� Isometrization of ��pinene

Determine the reaction coe�cients in the thermal isometrization of �	pinene� The linear

kinetic model ��
 is

y�� � ���� � ���y�
y�� � ��y�
y�	 � ��y� � ��	 � ���y	 � ��y� �����

y�� � �	y	
y�� � ��y	 � ��y��

where �i � � are the reaction coe�cients� Initial conditions for ����� are known� The

problem is to minimize

X

j��

ky�
j� ��� zjk�� ���
�

where zj are concentration measurements for y at time points 
�� � � � � 

�

Formulation

Our formulation of the �	pinene problem as an optimization problem follows �
�� �
� We

use a k	stage collocation method� a uniform partition with nh subintervals of ��� 


� and

the standard �
� pages 
���
��
 basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti��
�

for the components of the solution y of ������ The constraints in the optimization problem

are the initial conditions in ������ the continuity conditions� and the collocation equations�

The continuity equations at each interior grid point are a set of ��nh � �� linear equations�
The collocation equations are a set of �knh nonlinear equations obtained by requiring that

the collocation approximation satisfy ����� at the collocation points� Data for this problem

appears in Table ����

Table ���� Isometrization of �	pinene data

Variables ��k � ��nh � �
Constraints ��k � ��nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints �knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� ���k � ���

Nonzeros in c��x� ��k�k � ��nh

��



Performance

We provide results for the AMPL formulation with k � � in Table ��
� The initial values

for the � parameters are �i � ���� The initial basis parameters are chosen so that the

collocation approximation is piecewise constant and interpolates the data� The solution

and data are shown in Figure ����

Table ��
� Performance on isometrization problem

Solver nh � �� nh � �� nh � ��� nh � ���

LANCELOT ������� s �
����	 s z z

f ��	�
��e���y ��	�	�
e���y z z

c violation ��

	��e���y ���		��e���y z z

iterations ��� �
	 z z

LOQO �
�
� s ���� s ��

 s ���

 s
f ��	

��e��� ��	

��e��� ��	

��e��� ��	

��e���

c violation ���e��� ���e��� 
��e��� 
��e���
iterations �
	 �� �� ��

MINOS ��	
 s ��
� s ����� s �	��
� s
f ��	

��e��� ��	

��e��� ��	

��e��� �������e���y

c violation ���e��� ���e��� ���e��� ��
e���y
iterations �

 
�� ���� ��
	
SNOPT ��
� s ���� s �
�	� s ������ s

f ��	

��e��� ��	

��e���y ��	

��e��� ��	

��e���y
c violation ��	e��� ���e���y ��
e��� ���e���y
iterations �
� ��
� ���� ��



y Errors or warnings� z Timed out�

LANCELOT stops with the message step got too small� near the solution for nh � ���
MINOS fails completely on nh � 
�� with unbounded �or badly scaled� problem� while

SNOPT manages a �p�rimal feasible solution� which could not satisfy dual feasibility for

both nh � ��� 
���
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Figure ���� Solution and data for the �	pinene problem
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� Marine Population Dynamics

Given estimates of the abundance of the population of a marine species at each stage �for

example� nauplius� juvenile� adult� as a function of time� determine stage speci�c growth

and mortality rates� The model for the population dynamics of the ns	stage population is

y�j � gj��yj�� � �mj � gj�yj � � � j � ns� �����

where mi and gi are the unknown mortality and growth rates at stage i with g� � gns � ��

This model assumes that the species eventually dies or grows into the next stage� with

the implicit assumption that the species cannot skip a stage� Initial conditions for the

di�erential equations are unknown� since the stage abundance measurements at the initial

time might also be contaminated with experimental error� We minimize the error between

computed and observed data�

nmX
j��

ky�
j �m� g�� zjk��

where zj are the stage abundance measurements� This problem is based on the work of

Rothschild� Sharov� Kearsley� and Bondarenko ���
�

Formulation

Our formulation of the marine population dynamics uses a k	stage collocation method� a

uniform partition with nh subintervals of ��� 
nm
� and the standard �
� pages 
���
��
 basis

representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti��
�

for the components of the solution y of ������ The constraints in the optimization problem

are the continuity conditions and the collocation equations� The continuity equations are a

set of ns�nh � �� linear equations� The collocation equations are a set of k ns nh nonlinear
equations obtained by requiring that the collocation approximation satisfy ����� at the

collocation points �ij � ti � h�j for i � �� � � � � nh and j � �� � � � � k�

Table ���� Marine population dynamics problem data

Variables �k� ��nsnh � �ns � �
Constraints �k � ��nsnh � ns
Bounds �ns � �
Linear equality constraints ns�nh � ��
Linear inequality constraints �
Nonlinear equality constraints knsnh

Nonlinear inequality constraints �
Nonzeros in r�f�x� �k� ���nsnm
Nonzeros in c��x� ��k� ���k � ��nsnh

��



The parameters in the problem are the nsnh initial conditions� the ns mortality rates�

the ns � � growth rates� and the �k � ��nsnh basis parameters in the representation of the
collocation approximation� Data for this problem appears in Table ����

We do not impose any initial conditions on the di�erential equations� since initial mea	

surements are usually contaminated with experimental error� Introducing these extra de	

grees of freedom into the problem formulation should allow solvers to �nd a better �t to

the data� A signi�cant di�erence between this problem and other parameter estimation

problems is that the population dynamics data usually contains large observation errors�

Performance

We provide results for the AMPL formulation with k � 
 in Table ��
� We use a simulated

dataset with ns � � stages� The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data�

Table ��
� Performance on marine population dynamics problem

Solver nh � �� nh � �� nh � ��� nh � ���

LANCELOT ����
� s ��
���� s ��
���� s z

f ��	
���e��
y ��	
���e��
y ��	
���e��
y z

c violation ��
�	��e���y ���
���e���y ���	�
�e���y z

iterations ��� �
� ��� z

LOQO ���
 s ���� s ����� s �
�� s
f ��	
���e��
 ��	
���e��
 ��	
���e��
 ��	
���e��


c violation ���e��� 
��e��� ��
e��� ��
e���
iterations �� �� �
 �

MINOS ���
 s ���
� s ��
�
� s ����� s

f ��	
���e��
 ��	
���e��
 ���

��e��
 �������e���y
c violation ���e��� ���e��� ���e��
 ���e���y
iterations ��� 
�
 �
�� ����
SNOPT 
���
 s �
��� s �

��	 s ������� s

f ��	
���e��
 ��	
���e��
 ��	
���e��
 ��	
���e��

c violation ���e��� ���e��� 
��e��� ���e���
iterations ���� �
�� ���� ����

y Errors or warnings� z Timed out�

LANCELOT returns the message step got too small for the values of nh for which

it terminates within �� ��� wall	clock seconds� The intermediate solution returned by

LANCELOT upon termination is in close agreement with the optimal solutions returned

by the other solvers� MINOS makes no progress with nh � 
��� returning with the error

unbounded �or badly scaled� problem�

The graph on the left of Figure ��� shows the populations for stages �� 
� �� and �� while

the graph on the right shows the populations for stages �� �� �� and �� In both cases� the �t

between the model and the data is not always tight�

For this problem we are using a relatively small number of collocation points �k � 
��

since in this case the number of parameters grows quickly with the number of stages� The

quality of the solution does not seem to be a�ected� at least as measured by the population

��



curves and the mortality and growth parameters�
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Figure ���� Marine populations for stages �� 
� �� � �left� and �� �� �� � �right�

Figure ��
 plots the mortality and growth parameters for the eight stages� Mortality

parameters are marked 	� while growth parameters are marked 
� The mortality parameters
for stages � and � are not zero� but they are on the order of ���	 and ����� respectively�
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Figure ��
� Mortality �	� and growth �
� parameters for the marine populations stages
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� Flow in a Channel

Analyze the �ow of a �uid during injection into a long vertical channel� assuming that the

�ow is modeled by the boundary value problem

u���� � R �u�u�� � uu���� � � � t � ��
u��� � �� u��� � �� u���� � u���� � ��

�����

where u is the potential function� u� is the tangential velocity of the �uid� and R is the

Reynolds number�

Formulation

We use a k	stage collocation method to formulate this problem as an optimization problem

with a constant merit function and equality constraints representing the solution of ������

We use a uniform partition with nh subintervals of ��� �
� and the standard �
� pages 
���
��


basis representation�

u�t� �
mX
j��

�t� ti�
j��

�j � ��� vij �
kX

j��

�t � ti�
j�m��

�j �m� ��� hj��wij � t � �ti� ti��
�

for u� Note that u � Cm����� �
� where m � � is the order of the di�erential equation�

The constraints in the optimization problem are the initial conditions in ������ the

continuity conditions� and the collocation equations� There are m � � initial conditions�

The continuity equations are a set of m�nh� �� linear equations� The collocation equations
are a set of k nh nonlinear equations obtained by requiring that u satisfy ����� at the

collocation points �ij � ti�h�j for i � �� � � � � nh and j � �� � � � � k� The collocation points �j
are the roots of the kth degree Legendre polynomial� The parameters in the optimization

problem are the �m� k�nh parameters vij and wij in the representation of u� Data for this

problem appears in Table ����

Table ���� Flow in a channel problem data

Variables �k� ��nh
Constraints �k� ��nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints knh

Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� k�k � 
�nh

Performance

Results for the AMPL implementation with k � � and R � �� are summarized in Table ��
�

The starting point is the function t��� � 
t� evaluated at the mesh points� Solutions for

��



several R are shown in Figure ���� This problem is easy to solve for small Reynolds numbers

but becomes increasingly di�cult to solve as R increases�

Table ��
� Performance on �ow in channel problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO ���� s ���	 s 
��� s ����� s
f �������e��� �������e��� �������e��� �������e���

c violation ���e��� ���e��� ��	e��� ��	e���
iterations �� �� �	 ��
MINOS ���	 s ���� s ����� s ����� s

f �������e��� �������e��� �������e��� �������e���
c violation ��
e��� ���e��� ���e��� ��
e��

iterations ��� ��� ��� 			
SNOPT ���� s 
��
 s �
�	� s 	
�� s

f �������e��� �������e��� �������e��� �������e���
c violation ���e��� ���e��� ���e��� ��	e���
iterations �	
 
	
 ��	
 �		�

y Errors or warnings� z Timed out�

LANCELOT is unable to solve even simple versions of the problem� advancing very

slowly toward the solution �as judged from the value of the merit function��
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Figure ���� Tangential velocity u� for Reynolds numbers R � �� ���� ���
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	 Robot Arm

Minimize the time taken for a robot arm to travel between two points�

Formulation

This problem originated in the thesis of Monika M�ossner	Beigel �Heidelberg University�� In

her formulation the arm of the robot is a rigid bar of length L that protrudes a distance

� from the origin to the gripping end and sticks out a distance L � � in the opposite

direction� If the pivot point of the arm is the origin of a spherical coordinate system� then

the problem can be phrased in terms of the length � of the arm from the pivot� the horizontal

and vertical angles ��� 
� from the horizontal plane� the controls �u�� u�� u��� and the �nal

time tf � Bounds on the length and angles are

��t� � ��� L
� j��t�j � �� � � 
�t� � ��

and for the controls�

ju�j � �� ju�j � �� ju�j � ��
The equations of motion for the robot arm are

L��� � u�� I��
�� � u� � I�


�� � u�� �����

where I is the moment of inertia� de�ned by

I� �
��L� ��	 � �	�

�
sin�
��� I� �

��L� ��	 � �	�

�
�

The boundary conditions are

���� � ��tf � � ���� ���� � �� ��tf � �

�

�
� 
��� � 
�tf � �

�

�
�

����� � ����� � 
���� � ���tf � � ���tf� � 
��tf � � ��

This model ignores the fact that the spherical coordinate reference frame is a noninertial

frame and should have terms for coriolis and centrifugal forces�

Implementation

In the implementation of Vanderbei �


 the controls u are eliminated by substitution� and

thus the equality constraints in ����� become the inequalities

jL���j � �� jI����j � �� jI�
��j � ��

In this implementation ����� is expressed in terms of a �rst	order system with the additional

variables ��� ��� and 
�� Discretization is done with a uniform time step and the trapezoidal

rule over nh intervals� Data for this problem is shown in Table ����

��



Table ���� Robot arm problem data

Variables 	�nh � �� � �
Constraints �nh
Bounds ��nh � ��
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation appear in Table ��
� All solvers were given the same

initial values� The initial values for � and 
 were set to the functions � � ��� and 
 � ���

evaluated at the grid points� Similarly� initial values for � were set to the discrete version

of the parabola

��t� �

�

�

�
t

tf

��

�

which matches three of the boundary conditions� The initial values for all the controls were

set to zero� and tf � � initially�

Table ��
� Performance on robotic arm problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT ���
 s ���� s ��� s ���	 s
f �������e���y ���

���e��
y ���

���e��
y ���

���e��
y

c violation ���


�e���y ���	���e���y ����
��e���y �������e���y
iterations � � � �
LOQO ���� s ��

 s z z

f 	����

e��� 	�����
e��� z z

c violation ���e��� ��
e��� z z

iterations �� �� z z

MINOS ��
� s 	�
	 s �
�	� s �����
 s
f 	����

e��� 	�����
e��� 	�����
e��� 	�����
e���

c violation ���e��� ���e��� ��
e��� ��
e���
iterations ��� ��
 
�� ���

SNOPT ����� s ���
 s ��
��� s ��
���� s

f 	����

e��� ��	�
��e���y 	������e��� 	������e���
c violation ��	e��� ���e���y ���e��� ���e���
iterations 
	� �	

 ��	
 ����

y Errors or warnings� z Timed out�

��



LANCELOT reports that it could not �nd a feasible solution for any of the versions

we try for this implementation� For nh � ���� SNOPT encounters di�culties� which it

describes as an error evaluating nonlinear expressions�

Figure ��� shows the variables �� �� 
 for the robot arm as a function of time� We also

show in Figure ��
 the controls u�� u� � u� as a function of time� Note that the controls for

the robot arm are bang	bang� Also note that the functions �� �� 
 for the robot arm are

continuously di�erentiable� but since the second derivatives are directly proportional to the

controls� the second derivatives are piecewise continuous�
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Figure ���� Variables �� �� 
 for the robot arm as a function of time
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Figure ��
� Control variables u�� u�� u� for the robot arm as a function of time
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 Particle Steering

Minimize the time taken for a particle� acted upon by a thrust of constant magnitude� to

achieve a given altitude and terminal velocity�

Formulation

The equations of motion are

�y� � a cos�u�� �y� � a sin�u�� �����

where �y�� y�� is the position of the particle� u is the control angle with

ju�t�j � �



�

and a is the constant magnitude of thrust� The particle is initially at rest so that

y���� � y���� � �y���� � �y���� � ��

The problem is to minimize the travel time tf so that the particle achieves a given height

y��tf � and terminal velocity � �y��tf �� �y��tf���

This is a classical �see Bryson and Ho ��� pages ����

� problem in dynamic optimization�

We use a � ��� for the magnitude of thrust and the boundary conditions ��


y��tf � � �� �y��tf � � ��� �y��tf� � ��

Discretization is done using a uniform time step and the trapezoidal rule for the integration

of the system over nh intervals� Data for this problem is shown in Table ����

Table ���� Particle steering problem data

Variables ��nh � �� � �
Constraints �nh
Bounds nh � �
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are given in Table ��
� The initial values for y� and

y	 � �y� are chosen as the functions

y��t� � �

�
t

tf

�
� y	�t� � ��

�
t

tf

�
�


�



Table ��
� Performance on particle steering problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT ���
� s ������ s ����
	 s �		
�

 s
f �����
�e��� �����	�e��� �����

e��� �������e���y

c violation ���	���e��� ��	�	��e��� �������e��� 
������e���y
iterations ��� ��� ��� �
�
LOQO 	���� s z z z

f ������
e��� z z z

c violation ���e��� z z z

iterations ����� z z z

MINOS ���
 s ���� s �
�
� s �����	 s
f ������
e��� �����	�e��� �����

e��� �����
�e���

c violation ���e��� ���e��
 ���e��� 
�	e���
iterations �

 ��� ���	 �
��

SNOPT ���� s ����� s ���
� s ��
��
 s
f ������
e��� �����	�e��� �����

e��� �����
�e���

c violation ��
e��
 ��	e��	 ��
e��	 ���e��

iterations ��� ��� ���� ��
�

y Errors or warnings� z Timed out�

Initial values for y�� y� � �y�� and u are set to zero� The initial value for the �nal time is

tf � �� Plots of the height y� and control u as a function of the horizontal position y� are

in Figure ����

Only LANCELOT returns an error here� for nh � ���� of step got too small� Even so�

it comes near to the optimal solution value�
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Figure ���� Height and control as a function of position for the particle steering problem







�� Goddard Rocket

Maximize the �nal altitude of a vertically launched rocket� using the thrust as a control

and given the initial mass� the fuel mass� and the drag characteristics of the rocket�

Formulation

This is a classical problem in dynamic optimization that is typical of control problems with

a singular arc� See Bryson ��� pages ��
����
 for background information� The equations

of motion for the rocket are

h� � v� v� �
T �D�h� v�

m
� g�h�� m� � �T

c
� ������

where h is the altitude from the center of the earth� v is the vertical velocity� T is the rocket

thrust� D is the aerodynamic drag� g is the gravitational force� and c is a constant that

measures the impulse of the rocket fuel� The thrust must satisfy

� � T �t� � Tmax�

The drag and the gravitational force are de�ned by

D�h� v� � �
�
Dcv

� exp

�
�hc

�
h � h���

h���

��
� g�h� � g�

�
h���

h

��

�

where Dc and hc are constants� and g� is the gravitational force at the earth�s surface� The

rocket is initially at rest �v��� � ��� and the mass at the end of the �ight is a fraction of

the initial mass�

m�tf � � mcm����

where tf is the �ight time and mc is a constant� In addition to the bounds on the thrust�

there are bounds

m�tf� � m�t� � m���� h�t� � h���� v�t� � ��

on the mass� altitude� and velocity of the rocket� These bounds are a direct consequence of

the equations of motion �������

The equations of motion can be made dimension free by scaling the equations and

choosing the model parameters in terms of h���� m���� and g�� We follow ��
 and use

Tmax � ��� g�m���� Dc � vc
m���

g�
� c � �

�
�g�h����

����

With these choices we can assume� without loss of generality� that h��� � m��� � g� � ��

We also follow ��
 and choose

hc � ���� mc � ���� vc � �
��

We discretize the equations of motion with the trapezoidal rule� and a uniform mesh with

nh intervals� Data for this problem appears in Table �����


�



Table ����� Goddard rocket problem data

Variables ��nh � �� � �
Constraints �nh
Bounds ��nh � ��
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are shown in Table ���
� For starting points we use

tf � � and the functions h � ��

v�t� �
t

tf

�
�� t

tf

�
� m�t� � �mf �m��

�
t

tf

�
�m��

evaluated at the grid points� The initial value for the thrust is T � Tmax�
�

For the rocket problem with nh � 
��� ���� MINOS makes no progress� declaring it to

be an unbounded �or badly scaled� problem�

Table ���
� Performance on Goddard rocket problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO ���� s ���
 s ���� s ����� s
f �����
�e��� �����
�e��� �����
�e��� �����
�e���

c violation ���e��� ���e��� 
��e��� 
��e���
iterations ��� �� �� �


MINOS ���	 s ���
 s ���� s ��	� s
f �����
�e��� �����

e��� 	�
����e���y �������e���y

c violation ��
e��� ���e��� ���e���y ���e���y
iterations ��
 �

 �	� ���
SNOPT ���� s 	�� s ���� s ����
 s

f �����
�e��� �����
�e��� �����
�e��� ������
e���
c violation ��	e��	 ���e��
 ���e��	 ���e��

iterations ���� ���
 ���
 ����

y Errors or warnings� z Timed out�

Figure ���� shows the altitude and mass of the rocket as a function of time� Note that

altitude increases until a maximum altitude of h � ���� is reached� while the mass of the

rocket steadily decreases until the �nal mass of m�tf� � ��� is reached at t � ������


�



Figure ���
 shows the velocity and thrust as a function of time� The thrust is bang	

singular	bang� with the region of singularity occurring when

� � T �t� � Tmax�

This �gure shows that the optimal �ight path involves using maximal thrust until t � ���

�

and no thrust for t � ������ at which point the �nal mass is reached� and the rocket coasts
to its maximal altitude� The oscillations that appear at the point of discontinuity in the

thrust parameter can be removed by using more grid points�
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Figure ����� Altitude and mass for the Goddard rocket problem
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Figure ���
� Velocity and thrust for the Goddard rocket problem
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�� Hang Glider

Maximize the �nal horizontal position of a hang glider while in the presence of a thermal

updraft�

Formulation

The formulation of this problem follows ��
� The equations of motion for the hang glider

are

x�� �
�

m
��L sin����D cos����� y�� �

�

m
�L cos����D sin����� g� ������

where �x� y� is the position of the glider� m is the mass of the glider� g is the gravitational

constant� and the function � is de�ned by

sin��� �
w�x� y��

v�x� x�� y��
� cos��� �

x�

v�x� x�� y��
�

where

v�x� x�� y�� �
p
x�� � w�x� y���� w�x� y�� � y� � u�x��

u�x� � uc��� r�x�� exp��r�x��� r�x� �

�
x

rc
� 
��

��

�

and constants uc � 
�� and rc � ���� The updraft function u is positive in a neighborhood

of x � 
�� rc but drops to zero exponentially away from x � 
�� rc� The functions D and L

are de�ned by

D�x� x�� y�� cL� �
�




�
c� � c�c

�
L

�
�Sv�x� x�� y���� L�x� x�� y�� cL� �

�



cL�Sv�x� x

�� y����

where S is the wing area� � is the air density� cL is the aerodynamic lift coe�cient� and

c� � c�c
�
L is the drag coe�cient� For this glider

c� � ������ c� � �������
� S � ��� � � �����

The aerodynamic lift coe�cient cL must satisfy the bounds

� � cL�t� � cmax�

and we also impose the natural bounds x � � and x� � �� In this problem cmax � ����

m � ���� g � ����� and the boundary conditions are

x��� � �� y��� � ����� y�tf � � ����

x���� � x��tf � � ���
�� y���� � y��tf � � ���
���
Discretization is done with a uniform time step and the trapezoidal rule over nh intervals�

Data for this problem is shown in Table �����


�



Table ����� Hang glider problem data

Variables ��nh � �� � �
Constraints �nh
Bounds ��nh � ��
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are shown in Table ���
� For starting points we use

tf � � and the functions x
� � x����� y� � y����� and

x�t� � x��� � x����

�
t

tf

�
� y�t� � y��� � �y�tf�� y����

�
t

tf

�
�

evaluated at the grid points� The initial value for the control is cL�t� � cmax�

MINOS fails to produce a solution for any of the problem versions we present it� declaring

each an infeasible problem �or bad starting guess��

Table ���
� Performance on hang glider problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT z ����
� s �	��
� s z

f z �������e��� ����

	e��� z

c violation z 	����	�e��
 ��
����e��
 z

iterations z �
� ��	 z

LOQO z ��
��
 s �����
� s z

f z �������e��� ����

�e��� z

c violation z ���e��� ���e��� z

iterations z ����
 
��� z

MINOS �
��� s 	��
 s ������ s 
����� s
f ����
��e���y �������e���y 
��
�
�e���y ��	���
e���y

c violation ���e���y ���e���y ���e���y ���e���y
iterations 
	�	 ����
 ��
�
 ���



SNOPT ����� s ����� s ������ s ���
��
 s
f ���
��	e��� �������e��� ����

	e��� ����
	
e���

c violation ��
e��� ��
e��� ���e��� ���e���
iterations �
�� ���� 
	�� ���
�

y Errors or warnings� z Timed out�

Figure ���� shows the altitude and control function cL as a function of time� The glider

starts at an altitude of y��� � ���� and descends until the glider meets the updraft centered

at x � 
��� As a result the glider climbs and then descends to the desired �nal altitude of

y�tf � � ��� at time tf � ����
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Figure ����� Altitude and control cL for the hang glider problem

Figure ���
 shows velocities x� and y� as a function of time� Note� in particular� the

erratic behavior of the velocities while the control is in the bang	region where cL�t� � cmax�
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Figure ���
� Velocities x� and y� for the hang glider problem
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�� Catalytic Cracking of Gas Oil

Determine the reaction coe�cients for the catalytic cracking of gas oil into gas and other

byproducts� The nonlinear model �
�
 that describes the process is

y�� � ���� � �	�y
�
� ��
���

y�� � ��y
�
� � ��y�

with coe�cients �i � � for i � �� � � � � �� Initial conditions for ��
��� are known� The problem
is to minimize

��X
j��

ky�
j� ��� zjk��

where zj are concentration measurements for y at time points 
�� � � � � 
���

Formulation

Our formulation of the catalytic cracking of gas oil problem as an optimization problem

follows �
�� �
� We use a k	stage collocation method� a uniform partition of the interval

��� 
��
 with nh intervals� and the standard �
� pages 
��
��
 basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti��
�

for the components of the solution �y�� y�� of ��
���� The constraints in the optimization

problem are the initial conditions in ��
���� the continuity conditions� and the collocation

equations� The continuity equations are a set of 
�nh� �� linear equations� The collocation
equations are a set of 
knh nonlinear equations obtained by requiring that the collocation

approximation satisfy ��
��� at the collocation points� Data for this problem appears in

Table �
���

Table �
��� Catalytic cracking of gas oil data

Variables ��k � ��nh � �
Constraints ��k � ��nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints �knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� ��k�

Nonzeros in c��x� �k�k � ��nh

Performance

We provide results for the AMPL formulation with k � � in Table �
�
� The initial values for

the � parameters are �i � ���� The initial basis parameters are chosen so that the collocation


�



approximation is piecewise constant and interpolates the data� Data is generated by solving

��
��� numerically using the Tjoa and Biegler �
�
 values � � ��
� �� 
� and applying a

relative random perturbation of size ����� Figure �
�� shows the solution and the data�

Table �
�
� Performance on catalytic cracking of gas oil problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT 	�
��
 s �����

 s z z

f �������e��� �����
�e��� z z

c violation ����	��e��
 ��
�

�e��
 z z

iterations �
� 		� z z

LOQO ���
 s ���� s ���� s �	��� s
f �������e��� ������	e��� ������	e��� ������	e���

c violation ��
e��	 ��
e��	 ��	e��	 ���e��	
iterations �� �� �� ��
MINOS ���� s ����� s �	��� s ����		 s

f �������e��� ������	e��� ������	e��� ������	e���
c violation ���e��� 	��e��� ���e��
 ��	e��	
iterations ��� ��� 	�� ����
SNOPT ���� s ����� s �
��� s �
	�
� s

f �������e��� ������	e��� ������	e��� ������	e���
c violation ���e��� ���e��
 ���e��
 ���e��

iterations ��� ���� ��	
 ��		

y Errors or warnings� z Timed out�
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Figure �
��� Solution and data for the catalytic cracking of gas oil problem
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�� Methanol to Hydrocarbons

Determine the reaction coe�cients for the conversion of methanol into various hydrocarbons�

The nonlinear model ��
� ��
 that describes the process is

y�� � �
�

�� � ��y�

��� � ���y� � y�
� �	 � ��

�
y�

y�� �
��y����y� � y��

��� � ���y� � y�
� �	y� ������

y�	 �
��y��y� � ��y��

��� � ���y� � y�
� ��y�

with coe�cients �i � � for i � �� � � � � �� Initial conditions for ������ are known� The problem
is to minimize

��X
j��

ky�
j� ��� zjk��

where zj are concentration measurements for y at time points 
�� � � � � 
���

Formulation

Our formulation of the methanol	to	hydrocarbons problem as an optimization problem fol	

lows �
�� �
� We use a k	stage collocation method� a uniform partition of the interval ��� 
��


with nh intervals� and the standard �
� pages 
��	
��
 basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti��
�

for the components of the solution �y�� y�� y	� of ������� The constraints in the optimization

problem are the initial conditions in ������� the continuity conditions� and the collocation

equations� The continuity equations are a set of ��nh� �� linear equations� The collocation
equations are a set of �knh nonlinear equations obtained by requiring that the collocation

approximation satisfy ������ at the collocation points� Data for this problem appears in

Table �����

Table ����� Methanol	to	hydrocarbons data

Variables ��k � ��nh � �
Constraints ��k � ��nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints �knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
k�

Nonzeros in c��x� 
k�k � ��nh

��



Performance

We provide results for the AMPL formulation with k � � in Table ���
� The initial values for

the � parameters are �i � ���� The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data� Data is generated by solving

������ numerically using � � �
���� ���� ���
� ���� ���� as given in Maria ���
 and applying a

relative random perturbation of size ����� Figure ���� shows the solution and the data�

Table ���
� Performance on methanol	to	hydrocarbons problem

Solver nh � �� nh � ��� nh � ��� nh � ���

LANCELOT �	���� s �
	��
� s z z

f 	������e��� 	������e��� z z

c violation ��	����e��� ��

���e��� z z

iterations ��� ��� z z

LOQO ���� s ���� s �
�

 s ���� s
f 	�����	e��� 	�����	e��� 	�����	e��� 	�����	e���

c violation ���e��
 ��
e��
 ��
e��
 ��	e��

iterations �	 �� �� ��

MINOS ���� s ����	 s ���
� s �����
 s
f 	�����
e��� 	�����	e��� 	�����
e��� 	�����
e���

c violation 	��e��� 	�
e��� ���e��� ���e���
iterations ��
 	�� ���� �	��
SNOPT ���	� s ����
 s ����		 s ������ s

f 	�����
e��� 	�����	e��� 	�����
e��� 	�����
e���
c violation ��
e��	 	�
e��� ���e��	 ���e��	
iterations �	� ��	
 ��
	 �	
�

y Errors or warnings� z Timed out�
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Figure ����� Solution and data for the methanol	to	hydrocarbons problem
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�� Catalyst Mixing

Determine the optimal mixing policy of two catalysts along the length of a tubular plug

�ow reactor involving several reactions�

Formulation

The nonlinear model �
�
 that describes the reactions is

x���t� � u�t����x��t�� x��t�� ������

x���t� � u�t��x��t�� ��x��t��� ��� u�t��x��t��

Initial conditions for ������ are x���� � � and x���� � �� The control variable u represents

the mixing ratio of the catalysts and must satisfy the bounds

� � u�t� � ��

The problem is to minimize

�� � x��tf � � x��tf �� ����
�

where the �nal time is �xed at tf � ��

We discretize the control and state variables along a uniform mesh with nh intervals

and with the standard trapezoidal rule� Data for this problem appears in Table �����

Table ����� Catalyst mixing data

Variables ��nh � ��
Constraints �nh
Bounds nh � �
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are shown in Table ���
� For starting points we use

u � �� x� � �� and x� � � evaluated at the grid points�

The catalyst mixing problem is a typical bang	singular	bang problem� The singularity

leads to nonunique values of the control in the singular region� and thus it is possible to

obtain di�erent values for the control� Figure ���� shows the controls obtained by two

di�erent solvers�

The results in Table ���
 show that all the solvers are successful for nh � ��� but that
the objective function value �uctuates somewhat� This is probably due to the bang	singular	

bang nature of the problem� The most common approach to dealing with singular control

��



Table ���
� Performance on catalyst mixing problem

Solver nh � ��� nh � ��� nh � ��� nh � 
��

LANCELOT 
�
� s ���
� s 

��� s ������ s
f ���

�
�e��� ���
����e��� ���

���e��� ���
�
��e���

c violation 	���
	�e��� ����
	�e��� ���	

�e��� ��	�
��e���
iterations 
� 	
 ��� ���
LOQO ���� s ���
 s ��� s 
��� s

f ���
��	�e��� ���
��	�e��� ���
����e��� ���
���	e���
c violation 
��e��
 ���e��
 ���e��
 ���e��

iterations �� �� �� ��
MINOS ���	 s ���� s ���� s �
�

 s

f ���
����e��� ���
����e��� ���
	

�e��� ���
�


e���
c violation ���e��� ���e��� ���e��� ���e���
iterations ��
 ��� ��� �
�

SNOPT ��		 s �
��� s 

�
� s �
���� s
f ���
��
	e��� ���
��
�e��� ���
���	e��� ���
����e���

c violation ��
e��
 ��
e��
 ���e��
 ���e���
iterations ��	 
�� ���
 ���	

y Errors or warnings� z Timed out�

problems is to add a penalty to the objective function that leads to a smooth control� for

example�

�

Z �

�

u��t�� dt

for some positive value of �� Values of � � � seems to work well for this problem� but an
appropriate value is di�cult to �nd�
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Figure ����� Controls obtained by two di�erent solvers for the catalyst mixing problem
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�� Elastic�Plastic Torsion

Determine the stress potential in an in�nitely long cylinder when torsion is applied�

Formulation

The elastic	plastic torsion problem ���� pages �����
 can be formulated in terms of the

cross	section D of the cylinder� and the torsion angle c per unit length� The stress potential
u minimizes the quadratic q � K �� R�

q�v� �

Z
D

	
�



krv�x�k�� c v�x�



dx�

over the convex set K� where

K � fv � H�
� �D� � jvj � dist�x� �D�� x � Dg�

dist�x� �D� is the distance from x to the boundary of D� and H�
��D� is the space of functions

with gradients in L��D� that vanish on the boundary of D�
A �nite element approximation to the elastic	plastic torsion problem is obtained by

triangulating D and minimizing q over the space of piecewise linear functions with values

vi�j at the vertices of the triangulation� We follow ���� �
 by choosing D � ��� �
� ��� �
� and
using a triangulation with� respectively� nx and ny internal grid points in the coordinate

directions� Data for this problem appears in Table �����

Table ����� Elastic	plastic torsion problem data

Variables nxny

Constraints �
Bounds nxny
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results for the AMPL formulation with c � � in Table ���
� For these results

we �x nx � �� and vary ny � The starting guess is the function dist�x� �D� evaluated at the
grid nodes� Figure ���� shows the potential in the torsion problem with c � �� The number

of active constraints in this problem increases with c� Also

lim
c��

vc�x� � dist�x� �D��

where vc is the potential as a function of c�

��



Table ���
� Performance on elastic	plastic torsion problem

Solver ny � �� ny � �� ny � 
� ny � ���

LANCELOT ���� s 
�� s ���
� s �
��	 s
f ����
���e��� ����
�

e��� ����
�		e��� ����
��	e���

c violation �������e��� �������e��� �������e��� �������e���
iterations �� �
 �	 ��
LOQO ��		 s ��	� s ����� s ���
� s

f ����
���e��� ����
�

e��� ����
�		e��� ����
��	e���
c violation ��	e��� ��
e��� ���e��� ��
e���
iterations �	 �	 �� ��
MINOS ��
��� s 
����� s �
�
��� s z

f ����
���e��� ����
�

e��� ����
�		e��� z

c violation ���e��� ���e��� ���e��� z

iterations 	�� �

� ���� z

SNOPT �����
 s ���
��� s z z

f ����
���e��� ����
�

e��� z z

c violation ���e��� ���e��� z z

iterations ���
 ���� z z

y Errors or warnings� z Timed out�
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Figure ����� Elastic plastic torsion problem with c � �
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�� Journal Bearing

Given the eccentricity � of the journal bearing� �nd the pressure distribution in the lubricant

separating the shaft from the bearing�

Formulation

The journal bearing problem ���
 requires determining the pressure between two circular

cylinders of length L and radii R and R � c� The separation between the cylinders is �c�

where � is the eccentricity� The pressure v minimizes the quadratic q � K �� R�

q�v� �

Z
D

	
�



wq�x�krv�x�k�� wl�x�v�x�



dx�

over the convex set K� where D � ��� 
��� ��� 
b��
K � fv � H�

��D� � v � �g�
H�
� �D� is the space of functions with gradients in L��D� that vanish on the boundary of D�

and the functions wq � D �� R and wl � D �� R are de�ned by

wq���� ��� � �� � � cos ���
	� wl���� ��� � � sin ���

with � � ��� �� the eccentricity of the bearing�
A �nite element approximation to the journal bearing problem is obtained by triangu	

lating D and minimizing q over the space of piecewise linear functions with values vi�j at

the vertices of the triangulation� We follow ��
 by using a triangulation with� respectively�

nx and ny internal grid points in the coordinate directions� Data for this problem appears

in Table �����

Table ����� Journal bearing problem data

Variables nxny
Constraints �
Bounds nxny

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results with the AMPL formulation in Table ���
 with b � �� and � � ���� For

these results we �x nx � �� and vary ny � The starting guess is the function maxfsin�x�� �g
evaluated at the grid nodes� Figure ���� shows the pressure distribution for the journal

bearing problem�

��



Table ���
� Performance on pressure in journal bearing problem

Solver ny � �� ny � �� ny � 
� ny � ���

LANCELOT ���� s 
��	 s ���

 s �
�
	 s
f ��������e��� �����
��e��� �����	
�e��� ��������e���

c violation �������e��� �������e��� �������e��� �������e���
iterations �� �� �� ��
LOQO ���� s ��
� s 	��� s ����� s

f ��������e��� �����
��e��� �����	
�e��� ��������e���
c violation ���e��� ���e��� ��
e��� ���e���
iterations �� �	 �� ��
MINOS �
���� s 	����	 s �
����� s z

f ��������e��� �����
��e��� �����	
�e��� z

c violation ���e��� ���e��� ���e��� z

iterations ���� ���
 �	

 z

SNOPT 
����
 s z z z

f ��������e��� z z z

c violation ���e��� z z z

iterations ��
� z z z

y Errors or warnings� z Timed out�
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Figure ����� Journal bearing problem with � � ���
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�� Minimal Surface with Obstacle

Find the surface with minimal area� given boundary conditions� and above an obstacle�

Formulation

Plateau�s problem is to determine the surface of minimal area with a given closed curve

in R	 as boundary� We assume that the surface can be represented in nonparametric form

v � R� �� R� and we add the requirement that v � vL for some obstacle vL� The solution of

this obstacle problem ���
 minimizes the function f � K �� R�

f�v� �

Z
D

�
� � krv�x�k����� dx�

over the convex set K� where

K �
�
v � H��D� � v�x� � vD�x� for x � �D� v�x� � vL�x� for x � D

�
�

H��D� is the space of functions with gradients in L��D�� the function vD � �D �� R de�nes

the boundary data� and vL � D �� R is the obstacle� We assume that vL � vD on the

boundary �D�
A �nite element approximation to the minimal surface problem is obtained by triangu	

lating D and minimizing f over the space of piecewise linear functions with values vi�j at the
vertices of the triangulation� We set D � ��� �
� ��� �
 and use a triangulation with� respec	
tively� nx and ny internal grid points in the coordinate directions� Data for this problem

appears in Table �����

Table ����� Minimal surface problem data

Variables nxny

Constraints �
Bounds nxny

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results for the AMPL formulation in Table ���
� For these results we �x nx � ��

and vary ny � The starting guess is the function � � �
x� ��� evaluated at the grid nodes�
We used boundary data

vD�x� y� �

	
�� �
x� ���� y � �� �

�� otherwise�

��



and the obstacle

vL�x� y� �

	
� if jx� �

�
j � �

�
� jy � �

�
j � �

�

�� otherwise�

Figure ���� shows the minimal surface for this data�

Table ���
� Performance on minimal surface area with obstacle problem

Solver ny � �� ny � �� ny � 
� ny � ���

LANCELOT ��

 s ��	 s ����� s ����� s
f ����	�
e��� �����

e��� ������
e��� �����	�e���

c violation �������e��� �������e��� �������e��� �������e���
iterations 
 	 �� ��
LOQO ��	
 s 	�
� s ����� s z

f ����	�
e��� �����

e��� ������
e��� z

c violation ���e��� ��
e��� ���e��� z

iterations �� �
 �� z

MINOS ����
� s 	
��
� s z z

f ����	�
e��� �����

e��� z z

c violation ���e��� ���e��� z z

iterations 	�� �	
� z z

SNOPT ��
�

 s z z z

f ����	�
e��� z z z

c violation ���e��� z z z

iterations ���� z z z

y Errors or warnings� z Timed out�
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Figure ����� Minimal surface problem with a plate obstacle
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